p. 58-59	Graphing Quadratics in Factored Form	4.2
Warm-up - write the following in	p.58	
your notes:		

A quadratic equation in Standard Form can be written in Factored Form by writing the expression as a list of factors.

Standard Form \longrightarrow Factored Form

Turn in Homework --

 Blue worksheet (Graphing Quad Functions)Factored Form

$$
y= \pm a(x-p)(x-q)
$$

Axis of symmetry

$$
\mathrm{x}=\frac{p+q}{2}
$$

Vertex
Plug the x-value into equation

This form is helpful for determining the x-intercepts.
1.) Sketch the Graph

$$
y=(x-6)(x-2)
$$

p : \qquad
x-intercepts $(\overline{6}, \overline{0})$ \& $(2,0)$

$$
y=(4-6)(4-2)
$$

$$
\begin{aligned}
& x=\frac{p+q}{2} \quad y=(-2)(2)
\end{aligned}
$$

Axis of symmetry: $x=4$
Vertex:

$$
(4,-4)
$$

Opens:

2.) Sketch the graph
$y=-(x+5)(x-1)$
x-intercepts $(-5,0) \&(1,0)$
$y=-(-2+-2-1)$
$y=-(3)(-3)$
Axis of symmetry: $x=-2$
Vertex: $(-2,9)$
Opens: down Max) Min
Domain:
Range:

3.) A ball being thrown can be modeled using the following p. 59 equation, where x represents the time (seconds) and y represents the height (feet).

$$
y=-(x+1)(x-9)
$$

x-intercepts $(-1, \overline{0}) \& \overline{\overline{0}} \overline{\overline{4}}, 0)$
$y=-(4+1)(4-9)$
$y=25$
Axis of symmetry:

Vertex:

How long does it take for the ball to land on the ground? How long does it take for the ball to reach its maximum height? \qquad What is the maximum height reached? 2584. Is the ball being thrown from the ground? $\$ 0$

Closing Question

Find the \mathbf{x}-intercepts of the following quadratic equation:

$$
y=2(x+5)(x-8)
$$

Homework Assignment
Graphing Quadratics - Factored Form

