Guiding Question: Can I use factoring to answer questions about quadratics applications?

p. 62-63	Applications of Quadratics
Warm-up	p. 62

Find solutions to the quadratic equation by FACTORING

We found $x=-5$ and $x=2$ in our warmup
By setting our equation equal to 0 , we determined where the graph of that equation would cross the x axis.

Graph of $y=4 x^{2}+12 x-40$

1.) Danielle is throwing a ball to her friend Nick, who is standing on a balcony. The height, h (in feet), of the ball above the ground (t) seconds after it is thrown is given by

$$
h(t)=-16 t^{2}+32 t+20
$$

How can we label our axes for this situation?
a. At what height above the ground is the ball before Danielle throws it? Find $h(0)$.

$$
\begin{gathered}
h=-16(0)^{2}+32(0)+20 \\
h=20 \mathrm{ft}
\end{gathered}
$$

b. After how many seconds is the ball ON the ground? Set function equal to 0 and solve by factoring.

1.) Danielle is throwing a ball to her friend Nick, who is standing on a balcony. The height, h (in feet), of the ball above the ground (t) seconds after it is thrown is given by

$$
\begin{gathered}
h(t)=-16 t^{2}+32 t+20 \\
a=-16 \quad b=32
\end{gathered}
$$

c. What is the Axis of Symmetry? What

$$
X=\frac{-b}{2 a}
$$ information does this provide?

$$
x=\frac{-32}{2(-16)]} \quad x=1
$$

d. Use your answer from part (c) to find the vertex.

$$
\begin{aligned}
& h=-16\left(i^{2}+32()+20\right. \\
& h=36
\end{aligned}
$$

Use the information that we found to sketch the graph of the situation

2.) A submarine is an enclosed ship that can dive under water and reach deep depths of the ocean. The submarine Big Blue went on a trial run. The depth, in yards, of the submarine (t) minutes after the trial begins is given by $d(t)=t^{2}-9 t$.
a. What is the beginning depth of the submarine?

$$
t=()^{2}-9(0)
$$

b. After how many minutes is the submarine at sea level, or a depth of 0 ?

$$
\begin{aligned}
& 0=t^{2}-9 t \\
& 0=t(t-9) \\
& t=0 \text { or } \quad t-9=0 \\
& t=9
\end{aligned}
$$

2.) A submarine is an enclosed ship that can dive under water and reach deep depths of the ocean. The submarine Big Blue went on a trial run. The depth, in yards, of the submarine (t) minutes after the trial begins is given by $d(t)=t^{2}-9 t$.
c. When will the submarine reach its deepest depth?

$$
a=1 \quad b=-9 x=\frac{-b}{2 a}
$$

$$
X=\frac{-(-9)}{2(1)}
$$

$$
x=4.5
$$

d. What is the deepest depth?

$$
d=(4.5)^{2}-9(4.5)
$$

$$
d=-20.25
$$

Please write the following question on pg. 62
e. After how many minutes is the submarine at a depth of exactly -8 ?

$$
\begin{aligned}
& \begin{array}{l}
-8=t^{2}-9 t+8 \\
\hline 0=t^{2}-9 t+8
\end{array} \\
& t-1^{-8 t}-\frac{-9}{8} \\
& \begin{array}{l}
t \frac{t^{2}-1 t}{-1 t} \\
-8 t \mid 8
\end{array} \quad 0=(t-8)(t-1) \\
& t-8=0 \text { or } t-1=0 \\
& t=8 \quad t=1
\end{aligned}
$$

Use the information that we found to sketch the graph of the situation
time (mi)

Guiding Question: Can I use factoring to answer questions about quadratics applications?

Homework: Solving Quadratic Application Problems Worksheet

