p.44-45 Factoring Intro Sect. 4.4
 Warm-up: Pick up the handout P: 44 "Distributive Property Using Area"

Complete \# 1-4. Put the area inside each box.

p. 44

Distributive Property Using Area

\qquad
Write the expression that represents the area of each rectangle.
1.
$4 \square$
$4 \bigcirc 0$
2.

3. a

Find the area of each box in the pair.

${ }_{x}^{7} x^{x} x^{2}$ 2x
p. 44

Write the expression that represents the total length of each segment.
8.

9.

Write the area of each rectangle as the product of length \times width and also as a sum of the areas of each box.
11.

ArEA AS Product	ArEA AS Sum
$5(x+7)$	$5 x+35$

Area as ProDUCT	Area AS SUm
$X(x+12)$	$x^{2}+12 x$

13.

p. 44

Use the distributive property to re-write each expression as a sum. You may want to draw a rectangle on a separate page to follow the technique above.
14. $4(x+7)=4 x+28$
16. $-2(x+4)=-2 x-8$
18. $a(a-1)=a^{2}-1 a$
20. $-4(a-4)=-4 a t \mid b$
15. $7(x-3)=$ \qquad
17. $x(x+9)=\frac{x^{2}+a x}{3 m^{2}+}$
19. $3 m(m+2)=3 m^{2}+6 m$
21. $a(a-12)=a^{2}-12 a$

$$
\text { p. } 45
$$

Factoring a Common Factor
Name \qquad Using Area

Fill in the missing information for each: dimensions, area as product, and area as sum
1.

2.

3.

Area as a sum
Area as a product
Fill in the missing dimensions from the expression given.
5. $5 x+35=5(X+7)$
6. $2 x+12=2(x+6)$
7. $3 x-21=3 \times-7$

$\times 6$
区

55×35
2

$2 x$	12

8. $7 x-21=7(x-3)$
9. $-3 x-15=-3(X+5$

1. $\frac{-5 x+4 s=-5(x-9)}{\square}-9$

This process of writing a sum or difference as the product of factors is called factoring.

This process of writing a sum or difference as the product of factors is called factoring.
Factor these:
11. $4 x-16=$
13. $9 x-81=$
12. $-7 x-35=-7(x+5)$
14. $4 x+18=2(2 x+9)$

Homework time...

problems 1-6

